Pore Geometry Optimization of Titanium (Ti6Al4V) Alloy, for Its Application in the Fabrication of Customized Hip Implants
نویسندگان
چکیده
The present study investigates the mechanical response of representative volume elements of porous Ti-6Al-4V alloy, to arrive at a desired range of pore geometries that would optimize the reduction in stiffness necessary for biocompatibility with the stress concentration arising around the pore periphery, under physiological loading conditions with respect to orthopedic hip implants. A comparative study of the two is performed with the aid of a newly defined optimizing parameter called pore efficiency that takes into consideration both the stiffness quantity and the stress localization around pores. To perform a detailed analysis of the response of the porous structure over the entire spectrum of loading conditions that a hip implant is subjected to in vivo, the mechanical responses of 3D finite element models of cubic and rectangular parallelepiped geometries, with porosities varying over a range of 10% to 60%, are simulated under representative compressive, flexural as well as combined loading conditions. The results that are obtained are used to suggest a range of pore diameters that lower the effective stiffness and modulus of the implant to around 60% of the stiffness and modulus of dense solid implants while keeping the stress levels within permissible limits.
منابع مشابه
Fabrication of Porous Segments Using Ti-6Al-4V Chips for Orthopaedic Applications
Different methods have been evaluated for manufacturing the porous Ti6Al4V alloys according to decreasing stress shielding phenomenon and increasing mechanical compatibility between the metallic components and the host tissue. For this purpose, in this work Ti6Al4V alloy chips were pressed under 400 MPa pressure and then samples were categorized and heated into two groups at 1000 and 1150℃ unde...
متن کاملFree-Form-Fabricated Commercially Pure Ti and Ti6Al4V Porous Scaffolds Support the Growth of Human Embryonic Stem Cell-Derived Mesodermal Progenitors
Commercially-pure titanium (cp-Ti) and the titanium-aluminum-vanadium alloy (Ti6Al4V) are widely used as reconstructive implants for skeletal engineering applications, due to their good mechanical properties, biocompatibility and ability to integrate with the surrounding bone. Electron beam melting technology (EBM) allows the fabrication of customized implants with tailored mechanical propertie...
متن کاملFabrication of Porous Segments Using Ti-6Al-4V Chips for Orthopaedic Applications
Different methods have been evaluated for manufacturing the porous Ti6Al4V alloys according to decreasing stress shielding phenomenon and increasing mechanical compatibility between the metallic components and the host tissue. For this purpose, in this work Ti6Al4V alloy chips were pressed under 400 MPa pressure and then samples were categorized and heated into two groups at 1000 and 1150℃ unde...
متن کاملElectrochemical Behaviour and Galvanic Effects of Titanium Implants Coupled to Metallic Suprastructures in Artificial Saliva
The aim of the present study is to analyze the electrochemical behavior of five different dental alloys: two cobalt-chromium alloys (CoCr and CoCr-c), one nickel-chromium-titanium alloy (NiCrTi), one gold-palladium alloy (Au), and one titanium alloy (Ti6Al4V), and the galvanic effect when they are coupled to titanium implants (TiG2). It was carried out by electrochemical techniques (open circui...
متن کاملBone apposition to a titanium-zirconium alloy implant, as compared to two other titanium-containing implants.
Implants made of commercially pure titanium (cpTi) are widely and successfully used in dentistry. For certain indications, diameter-reduced Ti alloy implants with improved mechanical strength are highly desirable. The aim was to compare the osseointegration of titanium-zirconium (TiZr) and cpTi implants with a modified sandblasted and acid-etched (SLActive) surface and with a Ti6Al4V alloy that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014